Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Thinning, photonic beamsplitting, and a general discrete entropy power inequality (1605.07853v1)

Published 25 May 2016 in cs.IT, math.IT, and quant-ph

Abstract: Many partially-successful attempts have been made to find the most natural discrete-variable version of Shannon's entropy power inequality (EPI). We develop an axiomatic framework from which we deduce the natural form of a discrete-variable EPI and an associated entropic monotonicity in a discrete-variable central limit theorem. In this discrete EPI, the geometric distribution, which has the maximum entropy among all discrete distributions with a given mean, assumes a role analogous to the Gaussian distribution in Shannon's EPI. The entropy power of $X$ is defined as the mean of a geometric random variable with entropy $H(X)$. The crux of our construction is a discrete-variable version of Lieb's scaled addition $X \boxplus_\eta Y$ of two discrete random variables $X$ and $Y$ with $\eta \in (0, 1)$. We discuss the relationship of our discrete EPI with recent work of Yu and Johnson who developed an EPI for a restricted class of random variables that have ultra-log-concave (ULC) distributions. Even though we leave open the proof of the aforesaid natural form of the discrete EPI, we show that this discrete EPI holds true for variables with arbitrary discrete distributions when the entropy power is redefined as $e{H(X)}$ in analogy with the continuous version. Finally, we show that our conjectured discrete EPI is a special case of the yet-unproven Entropy Photon-number Inequality (EPnI), which assumes a role analogous to Shannon's EPI in capacity proofs for Gaussian bosonic (quantum) channels.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.