Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reshaped Wirtinger Flow and Incremental Algorithm for Solving Quadratic System of Equations (1605.07719v2)

Published 25 May 2016 in stat.ML and cs.LG

Abstract: We study the phase retrieval problem, which solves quadratic system of equations, i.e., recovers a vector $\boldsymbol{x}\in \mathbb{R}n$ from its magnitude measurements $y_i=|\langle \boldsymbol{a}_i, \boldsymbol{x}\rangle|, i=1,..., m$. We develop a gradient-like algorithm (referred to as RWF representing reshaped Wirtinger flow) by minimizing a nonconvex nonsmooth loss function. In comparison with existing nonconvex Wirtinger flow (WF) algorithm \cite{candes2015phase}, although the loss function becomes nonsmooth, it involves only the second power of variable and hence reduces the complexity. We show that for random Gaussian measurements, RWF enjoys geometric convergence to a global optimal point as long as the number $m$ of measurements is on the order of $n$, the dimension of the unknown $\boldsymbol{x}$. This improves the sample complexity of WF, and achieves the same sample complexity as truncated Wirtinger flow (TWF) \cite{chen2015solving}, but without truncation in gradient loop. Furthermore, RWF costs less computationally than WF, and runs faster numerically than both WF and TWF. We further develop the incremental (stochastic) reshaped Wirtinger flow (IRWF) and show that IRWF converges linearly to the true signal. We further establish performance guarantee of an existing Kaczmarz method for the phase retrieval problem based on its connection to IRWF. We also empirically demonstrate that IRWF outperforms existing ITWF algorithm (stochastic version of TWF) as well as other batch algorithms.

Citations (130)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.