Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive ADMM with Spectral Penalty Parameter Selection

Published 24 May 2016 in cs.LG, cs.AI, and cs.NA | (1605.07246v5)

Abstract: The alternating direction method of multipliers (ADMM) is a versatile tool for solving a wide range of constrained optimization problems, with differentiable or non-differentiable objective functions. Unfortunately, its performance is highly sensitive to a penalty parameter, which makes ADMM often unreliable and hard to automate for a non-expert user. We tackle this weakness of ADMM by proposing a method to adaptively tune the penalty parameters to achieve fast convergence. The resulting adaptive ADMM (AADMM) algorithm, inspired by the successful Barzilai-Borwein spectral method for gradient descent, yields fast convergence and relative insensitivity to the initial stepsize and problem scaling.

Citations (104)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.