Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Accelerated Randomized Mirror Descent Algorithms For Composite Non-strongly Convex Optimization (1605.06892v6)

Published 23 May 2016 in math.OC and stat.ML

Abstract: We consider the problem of minimizing the sum of an average function of a large number of smooth convex components and a general, possibly non-differentiable, convex function. Although many methods have been proposed to solve this problem with the assumption that the sum is strongly convex, few methods support the non-strongly convex case. Adding a small quadratic regularization is a common devise used to tackle non-strongly convex problems; however, it may cause loss of sparsity of solutions or weaken the performance of the algorithms. Avoiding this devise, we propose an accelerated randomized mirror descent method for solving this problem without the strongly convex assumption. Our method extends the deterministic accelerated proximal gradient methods of Paul Tseng and can be applied even when proximal points are computed inexactly. We also propose a scheme for solving the problem when the component functions are non-smooth.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.