Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mask-CNN: Localizing Parts and Selecting Descriptors for Fine-Grained Image Recognition (1605.06878v1)

Published 23 May 2016 in cs.CV

Abstract: Fine-grained image recognition is a challenging computer vision problem, due to the small inter-class variations caused by highly similar subordinate categories, and the large intra-class variations in poses, scales and rotations. In this paper, we propose a novel end-to-end Mask-CNN model without the fully connected layers for fine-grained recognition. Based on the part annotations of fine-grained images, the proposed model consists of a fully convolutional network to both locate the discriminative parts (e.g., head and torso), and more importantly generate object/part masks for selecting useful and meaningful convolutional descriptors. After that, a four-stream Mask-CNN model is built for aggregating the selected object- and part-level descriptors simultaneously. The proposed Mask-CNN model has the smallest number of parameters, lowest feature dimensionality and highest recognition accuracy when compared with state-of-the-arts fine-grained approaches.

Citations (109)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.