Efficient Document Indexing Using Pivot Tree (1605.06693v1)
Abstract: We present a novel method for efficiently searching top-k neighbors for documents represented in high dimensional space of terms based on the cosine similarity. Mostly, documents are stored as bag-of-words tf-idf representation. One of the most used ways of computing similarity between a pair of documents is cosine similarity between the vector representations, but cosine similarity is not a metric distance measure as it doesn't follow triangle inequality, therefore most metric searching methods can not be applied directly. We propose an efficient method for indexing documents using a pivot tree that leads to efficient retrieval. We also study the relation between precision and efficiency for the proposed method and compare it with a state of the art in the area of document searching based on inner product.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.