Make Workers Work Harder: Decoupled Asynchronous Proximal Stochastic Gradient Descent (1605.06619v1)
Abstract: Asynchronous parallel optimization algorithms for solving large-scale machine learning problems have drawn significant attention from academia to industry recently. This paper proposes a novel algorithm, decoupled asynchronous proximal stochastic gradient descent (DAP-SGD), to minimize an objective function that is the composite of the average of multiple empirical losses and a regularization term. Unlike the traditional asynchronous proximal stochastic gradient descent (TAP-SGD) in which the master carries much of the computation load, the proposed algorithm off-loads the majority of computation tasks from the master to workers, and leaves the master to conduct simple addition operations. This strategy yields an easy-to-parallelize algorithm, whose performance is justified by theoretical convergence analyses. To be specific, DAP-SGD achieves an $O(\log T/T)$ rate when the step-size is diminishing and an ergodic $O(1/\sqrt{T})$ rate when the step-size is constant, where $T$ is the number of total iterations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.