Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient and Compact Representations of Some Non-Canonical Prefix-Free Codes (1605.06615v3)

Published 21 May 2016 in cs.DS

Abstract: For many kinds of prefix-free codes there are efficient and compact alternatives to the traditional tree-based representation. Since these put the codes into canonical form, however, they can only be used when we can choose the order in which codewords are assigned to symbols. In this paper we first show how, given a probability distribution over an alphabet of $\sigma$ symbols, we can store an optimal alphabetic prefix-free code in $\Oh{\sigma \log L}$ bits such that we can encode and decode any codeword of length $\ell$ in $\Oh{\min (\ell, \log L)}$ time, where $L$ is the maximum codeword length. With $\Oh{2{L\epsilon}}$ further bits, for any constant $\epsilon>0$, we can encode and decode $\Oh{\log \ell}$ time. We then show how to store a nearly optimal alphabetic prefix-free code in (o (\sigma)) bits such that we can encode and decode in constant time. We also consider a kind of optimal prefix-free code introduced recently where the codewords' lengths are non-decreasing if arranged in lexicographic order of their reverses. We reduce their storage space to $\Oh{\sigma \log L}$ while maintaining encoding and decoding times in $\Oh{\ell}$. We also show how, with $\Oh{2{\epsilon L}}$ further bits, we can encode and decode in constant time. All of our results hold in the word-RAM model.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.