Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Regression with n$\to$1 by Expert Knowledge Elicitation (1605.06477v3)

Published 20 May 2016 in cs.LG

Abstract: We consider regression under the "extremely small $n$ large $p$" condition, where the number of samples $n$ is so small compared to the dimensionality $p$ that predictors cannot be estimated without prior knowledge. This setup occurs in personalized medicine, for instance, when predicting treatment outcomes for an individual patient based on noisy high-dimensional genomics data. A remaining source of information is expert knowledge, which has received relatively little attention in recent years. We formulate the inference problem of asking expert feedback on features on a budget, propose an elicitation strategy for a simple "small $n$" setting, and derive conditions under which the elicitation strategy is optimal. Experiments on simulated experts, both on synthetic and genomics data, demonstrate that the proposed strategy can drastically improve prediction accuracy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.