Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Combining Adversarial Guarantees and Stochastic Fast Rates in Online Learning (1605.06439v1)

Published 20 May 2016 in cs.LG

Abstract: We consider online learning algorithms that guarantee worst-case regret rates in adversarial environments (so they can be deployed safely and will perform robustly), yet adapt optimally to favorable stochastic environments (so they will perform well in a variety of settings of practical importance). We quantify the friendliness of stochastic environments by means of the well-known Bernstein (a.k.a. generalized Tsybakov margin) condition. For two recent algorithms (Squint for the Hedge setting and MetaGrad for online convex optimization) we show that the particular form of their data-dependent individual-sequence regret guarantees implies that they adapt automatically to the Bernstein parameters of the stochastic environment. We prove that these algorithms attain fast rates in their respective settings both in expectation and with high probability.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.