Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ImageCL: An Image Processing Language for Performance Portability on Heterogeneous Systems (1605.06399v1)

Published 20 May 2016 in cs.DC and cs.PL

Abstract: Modern computer systems typically conbine multicore CPUs with accelerators like GPUs for inproved performance and energy efficiency. However, these sys- tems suffer from poor performance portability, code tuned for one device must be retuned to achieve high performance on another. Image processing is increas- ing in importance , with applications ranging from seismology and medicine to Photoshop. Based on our experience with medical image processing, we propose ImageCL, a high-level domain-specific language and source-to-source compiler, targeting heterogeneous hardware. ImageCL resembles OpenCL, but abstracts away per- formance optimization details, allowing the programmer to focus on algorithm development, rather than performance tuning. The latter is left to our source-to- source compiler and auto-tuner. From high-level ImageCL kernels, our source- to-source compiler can generate multiple OpenCL implementations with different optimizations applied. We rely on auto-tuning rather than machine models or ex- pert programmer knowledge to determine which optimizations to apply, making our tuning procedure highly robust. Furthermore, we can generate high perform- ing implementations for different devices from a single source code, thereby im- proving performance portability. We evaluate our approach on three image processing benchmarks, on different GPU and CPU devices, and are able to outperform other state of the art solutions in several cases, achieving speedups of up to 4.57x.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube