Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tongue contour extraction from ultrasound images based on deep neural network (1605.05912v1)

Published 19 May 2016 in cs.CV

Abstract: Studying tongue motion during speech using ultrasound is a standard procedure, but automatic ultrasound image labelling remains a challenge, as standard tongue shape extraction methods typically require human intervention. This article presents a method based on deep neural networks to automatically extract tongue contour from ultrasound images on a speech dataset. We use a deep autoencoder trained to learn the relationship between an image and its related contour, so that the model is able to automatically reconstruct contours from the ultrasound image alone. In this paper, we use an automatic labelling algorithm instead of time-consuming hand-labelling during the training process, and estimate the performances of both automatic labelling and contour extraction as compared to hand-labelling. Observed results show quality scores comparable to the state of the art.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.