Papers
Topics
Authors
Recent
2000 character limit reached

Full characterization of generalized bent functions as (semi)-bent spaces, their dual, and the Gray image (1605.05713v1)

Published 18 May 2016 in cs.IT and math.IT

Abstract: In difference to many recent articles that deal with generalized bent (gbent) functions $f:\mathbb{Z}_2n \rightarrow \mathbb{Z}_q$ for certain small valued $q\in {4,8,16 }$, we give a complete description of these functions for both $n$ even and odd and for any $q=2k$ in terms of both the necessary and sufficient conditions their component functions need to satisfy. This enables us to completely characterize gbent functions as algebraic objects, namely as affine spaces of bent or semi-bent functions with interesting additional properties, which we in detail describe. We also specify the dual and the Gray image of gbent functions for $q=2k$. We discuss the subclass of gbent functions which corresponds to relative difference sets, which we call $\mathbb{Z}_q$-bent functions, and point out that they correspond to a class of vectorial bent functions. The property of being $\mathbb{Z}_q$-bent is much stronger than the standard concept of a gbent function. We analyse two examples of this class of functions.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.