Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Algorithms For Parameter Mean And Variance Estimation In Dynamic Regression Models (1605.05697v1)

Published 18 May 2016 in stat.ML

Abstract: We study the problem of estimating the parameters of a regression model from a set of observations, each consisting of a response and a predictor. The response is assumed to be related to the predictor via a regression model of unknown parameters. Often, in such models the parameters to be estimated are assumed to be constant. Here we consider the more general scenario where the parameters are allowed to evolve over time, a more natural assumption for many applications. We model these dynamics via a linear update equation with additive noise that is often used in a wide range of engineering applications, particularly in the well-known and widely used Kalman filter (where the system state it seeks to estimate maps to the parameter values here). We derive an approximate algorithm to estimate both the mean and the variance of the parameter estimates in an online fashion for a generic regression model. This algorithm turns out to be equivalent to the extended Kalman filter. We specialize our algorithm to the multivariate exponential family distribution to obtain a generalization of the generalized linear model (GLM). Because the common regression models encountered in practice such as logistic, exponential and multinomial all have observations modeled through an exponential family distribution, our results are used to easily obtain algorithms for online mean and variance parameter estimation for all these regression models in the context of time-dependent parameters. Lastly, we propose to use these algorithms in the contextual multi-armed bandit scenario, where so far model parameters are assumed static and observations univariate and Gaussian or Bernoulli. Both of these restrictions can be relaxed using the algorithms described here, which we combine with Thompson sampling to show the resulting performance on a simulation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.