Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Option Discovery in Hierarchical Reinforcement Learning using Spatio-Temporal Clustering (1605.05359v3)

Published 17 May 2016 in cs.LG, cs.AI, cs.CV, and cs.NE

Abstract: This paper introduces an automated skill acquisition framework in reinforcement learning which involves identifying a hierarchical description of the given task in terms of abstract states and extended actions between abstract states. Identifying such structures present in the task provides ways to simplify and speed up reinforcement learning algorithms. These structures also help to generalize such algorithms over multiple tasks without relearning policies from scratch. We use ideas from dynamical systems to find metastable regions in the state space and associate them with abstract states. The spectral clustering algorithm PCCA+ is used to identify suitable abstractions aligned to the underlying structure. Skills are defined in terms of the sequence of actions that lead to transitions between such abstract states. The connectivity information from PCCA+ is used to generate these skills or options. These skills are independent of the learning task and can be efficiently reused across a variety of tasks defined over the same model. This approach works well even without the exact model of the environment by using sample trajectories to construct an approximate estimate. We also present our approach to scaling the skill acquisition framework to complex tasks with large state spaces for which we perform state aggregation using the representation learned from an action conditional video prediction network and use the skill acquisition framework on the aggregated state space.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.