Papers
Topics
Authors
Recent
2000 character limit reached

Dataflow matrix machines as programmable, dynamically expandable, self-referential generalized recurrent neural networks (1605.05296v2)

Published 17 May 2016 in cs.NE and cs.PL

Abstract: Dataflow matrix machines are a powerful generalization of recurrent neural networks. They work with multiple types of linear streams and multiple types of neurons, including higher-order neurons which dynamically update the matrix describing weights and topology of the network in question while the network is running. It seems that the power of dataflow matrix machines is sufficient for them to be a convenient general purpose programming platform. This paper explores a number of useful programming idioms and constructions arising in this context.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.