Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Classification of Big Data with Application to Imaging Genetics (1605.04932v1)

Published 16 May 2016 in physics.data-an, cs.CV, and stat.ML

Abstract: Big data applications, such as medical imaging and genetics, typically generate datasets that consist of few observations n on many more variables p, a scenario that we denote as p>>n. Traditional data processing methods are often insufficient for extracting information out of big data. This calls for the development of new algorithms that can deal with the size, complexity, and the special structure of such datasets. In this paper, we consider the problem of classifying p>>n data and propose a classification method based on linear discriminant analysis (LDA). Traditional LDA depends on the covariance estimate of the data, but when p>>n the sample covariance estimate is singular. The proposed method estimates the covariance by using a sparse version of noisy principal component analysis (nPCA). The use of sparsity in this setting aims at automatically selecting variables that are relevant for classification. In experiments, the new method is compared to state-of-the art methods for big data problems using both simulated datasets and imaging genetics datasets.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube