Improving the Neural Algorithm of Artistic Style (1605.04603v1)
Abstract: In this work we investigate different avenues of improving the Neural Algorithm of Artistic Style (by Leon A. Gatys, Alexander S. Ecker and Matthias Bethge, arXiv:1508.06576). While showing great results when transferring homogeneous and repetitive patterns, the original style representation often fails to capture more complex properties, like having separate styles of foreground and background. This leads to visual artifacts and undesirable textures appearing in unexpected regions when performing style transfer. We tackle this issue with a variety of approaches, mostly by modifying the style representation in order for it to capture more information and impose a tighter constraint on the style transfer result. In our experiments, we subjectively evaluate our best method as producing from barely noticeable to significant improvements in the quality of style transfer.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.