Syntactically Guided Neural Machine Translation (1605.04569v2)
Abstract: We investigate the use of hierarchical phrase-based SMT lattices in end-to-end neural machine translation (NMT). Weight pushing transforms the Hiero scores for complete translation hypotheses, with the full translation grammar score and full n-gram LLM score, into posteriors compatible with NMT predictive probabilities. With a slightly modified NMT beam-search decoder we find gains over both Hiero and NMT decoding alone, with practical advantages in extending NMT to very large input and output vocabularies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.