Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Fluctuations of the SNR at the output of the MVDR with Regularized Tyler Estimators (1605.04534v1)

Published 15 May 2016 in cs.IT and math.IT

Abstract: This paper analyzes the statistical properties of the signal-to-noise ratio (SNR) at the output of the Capon's minimum variance distortionless response (MVDR) beamformers when operating over impulsive noises. Particularly, we consider the supervised case in which the receiver employs the regularized Tyler estimator in order to estimate the covariance matrix of the interference-plus-noise process using $n$ observations of size $N\times 1$. The choice for the regularized Tylor estimator (RTE) is motivated by its resilience to the presence of outliers and its regularization parameter that guarantees a good conditioning of the covariance estimate. Of particular interest in this paper is the derivation of the second order statistics of the SINR. To achieve this goal, we consider two different approaches. The first one is based on considering the classical regime, referred to as the $n$-large regime, in which $N$ is assumed to be fixed while $n$ grows to infinity. The second approach is built upon recent results developed within the framework of random matrix theory and assumes that $N$ and $n$ grow large together. Numerical results are provided in order to compare between the accuracies of each regime under different settings.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.