Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Iteration Complexity of Oblivious First-Order Optimization Algorithms (1605.03529v1)

Published 11 May 2016 in math.OC and cs.LG

Abstract: We consider a broad class of first-order optimization algorithms which are \emph{oblivious}, in the sense that their step sizes are scheduled regardless of the function under consideration, except for limited side-information such as smoothness or strong convexity parameters. With the knowledge of these two parameters, we show that any such algorithm attains an iteration complexity lower bound of $\Omega(\sqrt{L/\epsilon})$ for $L$-smooth convex functions, and $\tilde{\Omega}(\sqrt{L/\mu}\ln(1/\epsilon))$ for $L$-smooth $\mu$-strongly convex functions. These lower bounds are stronger than those in the traditional oracle model, as they hold independently of the dimension. To attain these, we abandon the oracle model in favor of a structure-based approach which builds upon a framework recently proposed in (Arjevani et al., 2015). We further show that without knowing the strong convexity parameter, it is impossible to attain an iteration complexity better than $\tilde{\Omega}\left((L/\mu)\ln(1/\epsilon)\right)$. This result is then used to formalize an observation regarding $L$-smooth convex functions, namely, that the iteration complexity of algorithms employing time-invariant step sizes must be at least $\Omega(L/\epsilon)$.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.