Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensorimotor Input as a Language Generalisation Tool: A Neurorobotics Model for Generation and Generalisation of Noun-Verb Combinations with Sensorimotor Inputs (1605.03261v1)

Published 11 May 2016 in cs.RO and cs.CL

Abstract: The paper presents a neurorobotics cognitive model to explain the understanding and generalisation of nouns and verbs combinations when a vocal command consisting of a verb-noun sentence is provided to a humanoid robot. This generalisation process is done via the grounding process: different objects are being interacted, and associated, with different motor behaviours, following a learning approach inspired by developmental language acquisition in infants. This cognitive model is based on Multiple Time-scale Recurrent Neural Networks (MTRNN).With the data obtained from object manipulation tasks with a humanoid robot platform, the robotic agent implemented with this model can ground the primitive embodied structure of verbs through training with verb-noun combination samples. Moreover, we show that a functional hierarchical architecture, based on MTRNN, is able to generalise and produce novel combinations of noun-verb sentences. Further analyses of the learned network dynamics and representations also demonstrate how the generalisation is possible via the exploitation of this functional hierarchical recurrent network.

Citations (23)

Summary

We haven't generated a summary for this paper yet.