Geometric Dominating Set and Set Cover via Local Search (1605.02499v2)
Abstract: In this paper, we study two classic optimization problems: minimum geometric dominating set and set cover. In the dominating-set problem, for a given set of objects in {the} plane as input, the objective is to choose a minimum number of input objects such that every input object is dominated by the chosen set of objects. Here, one object is dominated by {another} if both of them have {a} nonempty intersection region. For the second problem, for a given set of points and objects {in a plane}, the objective is to choose {a} minimum number of objects to cover all the points. This is a special version of the set-cover problem. For both problems obtaining a PTAS remains open for a large class of objects. For the dominating-set problem, we prove that {a} popular local-search algorithm leads to an $(1+\varepsilon)$ approximation for object sets consisting of homothetic set of convex objects (which includes arbitrary squares, $k$-regular polygons, translated and scaled copies of a convex set, etc.) in $n{O(1/\varepsilon2)}$ time. On the other hand, the same technique leads to a PTAS for geometric covering problem when the objects are convex pseudodisks (which includes disks, unit height rectangles, homothetic convex objects, etc.). As a consequence, we obtain an easy to implement approximation algorithm for both problems for a large class of objects, significantly improving the best known approximation guarantees.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.