Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximate Gaussian Elimination for Laplacians: Fast, Sparse, and Simple (1605.02353v1)

Published 8 May 2016 in cs.DS

Abstract: We show how to perform sparse approximate Gaussian elimination for Laplacian matrices. We present a simple, nearly linear time algorithm that approximates a Laplacian by a matrix with a sparse Cholesky factorization, the version of Gaussian elimination for symmetric matrices. This is the first nearly linear time solver for Laplacian systems that is based purely on random sampling, and does not use any graph theoretic constructions such as low-stretch trees, sparsifiers, or expanders. The crux of our analysis is a novel concentration bound for matrix martingales where the differences are sums of conditionally independent variables.

Citations (185)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.