Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rate-Distortion Bounds on Bayes Risk in Supervised Learning (1605.02268v2)

Published 8 May 2016 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We present an information-theoretic framework for bounding the number of labeled samples needed to train a classifier in a parametric Bayesian setting. We derive bounds on the average $L_p$ distance between the learned classifier and the true maximum a posteriori classifier, which are well-established surrogates for the excess classification error due to imperfect learning. We provide lower and upper bounds on the rate-distortion function, using $L_p$ loss as the distortion measure, of a maximum a priori classifier in terms of the differential entropy of the posterior distribution and a quantity called the interpolation dimension, which characterizes the complexity of the parametric distribution family. In addition to expressing the information content of a classifier in terms of lossy compression, the rate-distortion function also expresses the minimum number of bits a learning machine needs to extract from training data to learn a classifier to within a specified $L_p$ tolerance. We use results from universal source coding to express the information content in the training data in terms of the Fisher information of the parametric family and the number of training samples available. The result is a framework for computing lower bounds on the Bayes $L_p$ risk. This framework complements the well-known probably approximately correct (PAC) framework, which provides minimax risk bounds involving the Vapnik-Chervonenkis dimension or Rademacher complexity. Whereas the PAC framework provides upper bounds the risk for the worst-case data distribution, the proposed rate-distortion framework lower bounds the risk averaged over the data distribution. We evaluate the bounds for a variety of data models, including categorical, multinomial, and Gaussian models. In each case the bounds are provably tight orderwise, and in two cases we prove that the bounds are tight up to multiplicative constants.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.