Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fully dynamic data structure for LCE queries in compressed space (1605.01488v2)

Published 5 May 2016 in cs.DS

Abstract: A Longest Common Extension (LCE) query on a text $T$ of length $N$ asks for the length of the longest common prefix of suffixes starting at given two positions. We show that the signature encoding $\mathcal{G}$ of size $w = O(\min(z \log N \log* M, N))$ [Mehlhorn et al., Algorithmica 17(2):183-198, 1997] of $T$, which can be seen as a compressed representation of $T$, has a capability to support LCE queries in $O(\log N + \log \ell \log* M)$ time, where $\ell$ is the answer to the query, $z$ is the size of the Lempel-Ziv77 (LZ77) factorization of $T$, and $M \geq 4N$ is an integer that can be handled in constant time under word RAM model. In compressed space, this is the fastest deterministic LCE data structure in many cases. Moreover, $\mathcal{G}$ can be enhanced to support efficient update operations: After processing $\mathcal{G}$ in $O(w f_{\mathcal{A}})$ time, we can insert/delete any (sub)string of length $y$ into/from an arbitrary position of $T$ in $O((y+ \log N\log* M) f_{\mathcal{A}})$ time, where $f_{\mathcal{A}} = O(\min { \frac{\log\log M \log\log w}{\log\log\log M}, \sqrt{\frac{\log w}{\log\log w}} })$. This yields the first fully dynamic LCE data structure. We also present efficient construction algorithms from various types of inputs: We can construct $\mathcal{G}$ in $O(N f_{\mathcal{A}})$ time from uncompressed string $T$; in $O(n \log\log n \log N \log* M)$ time from grammar-compressed string $T$ represented by a straight-line program of size $n$; and in $O(z f_{\mathcal{A}} \log N \log* M)$ time from LZ77-compressed string $T$ with $z$ factors. On top of the above contributions, we show several applications of our data structures which improve previous best known results on grammar-compressed string processing.

Citations (64)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.