Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Single Channel Speech Enhancement Using Outlier Detection (1605.01329v1)

Published 4 May 2016 in cs.SD and cs.LG

Abstract: Distortion of the underlying speech is a common problem for single-channel speech enhancement algorithms, and hinders such methods from being used more extensively. A dictionary based speech enhancement method that emphasizes preserving the underlying speech is proposed. Spectral patches of clean speech are sampled and clustered to train a dictionary. Given a noisy speech spectral patch, the best matching dictionary entry is selected and used to estimate the noise power at each time-frequency bin. The noise estimation step is formulated as an outlier detection problem, where the noise at each bin is assumed present only if it is an outlier to the corresponding bin of the best matching dictionary entry. This framework assigns higher priority in removing spectral elements that strongly deviate from a typical spoken unit stored in the trained dictionary. Even without the aid of a separate noise model, this method can achieve significant noise reduction for various non-stationary noises, while effectively preserving the underlying speech in more challenging noisy environments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.