Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Phase 2: DCL System Using Deep Learning Approaches for Land-based or Ship-based Real-Time Recognition and Localization of Marine Mammals - Machine Learning Detection Algorithms (1605.00972v2)

Published 3 May 2016 in cs.CV

Abstract: Overarching goals for this work aim to advance the state of the art for detection, classification and localization (DCL) in the field of bioacoustics. This goal is primarily achieved by building a generic framework for detection-classification (DC) using a fast, efficient and scalable architecture, demonstrating the capabilities of this system using on a variety of low-frequency mid-frequency cetacean sounds. Two primary goals are to develop transferable technologies for detection and classification in, one: the area of advanced algorithms, such as deep learning and other methods; and two: advanced systems, capable of real-time and archival processing. For each key area, we will focus on producing publications from this work and providing tools and software to the community where/when possible. Currently massive amounts of acoustic data are being collected by various institutions, corporations and national defense agencies. The long-term goal is to provide technical capability to analyze the data using automatic algorithms for (DC) based on machine intelligence. The goal of the automation is to provide effective and efficient mechanisms by which to process large acoustic datasets for understanding the bioacoustic behaviors of marine mammals. This capability will provide insights into the potential ecological impacts and influences of anthropogenic ocean sounds. This work focuses on building technologies using a maturity model based on DARPA 6.1 and 6.2 processes, for basic and applied research, respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube