Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fault Tolerance for Stream Processing Engines (1605.00928v3)

Published 3 May 2016 in cs.DC

Abstract: Distributed Stream Processing Engines (DSPEs) target applications related to continuous computation, online machine learning and real-time query processing. DSPEs operate on high volume of data by applying lightweight operations on real-time and continuous streams. Such systems require clusters of hundreds of machine for their deployment. Streaming applications come with various requirements, i.e., low-latency, high throughput, scalability and high availability. In this survey, we study the fault tolerance problem for DSPEs. We discuss fault tolerance techniques that are used in modern stream processing engines that are Storm, S4, Samza, SparkStreaming and MillWheel. Further, we give insight on fault tolerance approaches that we categorize as active replication, passive replication and upstream backup. Finally, we discuss implications of the fault tolerance techniques for different streaming application requirements.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.