Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lossless Linear Analog Compression (1605.00912v2)

Published 3 May 2016 in cs.IT and math.IT

Abstract: We establish the fundamental limits of lossless linear analog compression by considering the recovery of random vectors ${\boldsymbol{\mathsf{x}}}\in{\mathbb R}m$ from the noiseless linear measurements ${\boldsymbol{\mathsf{y}}}=\boldsymbol{A}{\boldsymbol{\mathsf{x}}}$ with measurement matrix $\boldsymbol{A}\in{\mathbb R}{n\times m}$. Specifically, for a random vector ${\boldsymbol{\mathsf{x}}}\in{\mathbb R}m$ of arbitrary distribution we show that ${\boldsymbol{\mathsf{x}}}$ can be recovered with zero error probability from $n>\inf\underline{\operatorname{dim}}\mathrm{MB}(U)$ linear measurements, where $\underline{\operatorname{dim}}\mathrm{MB}(\cdot)$ denotes the lower modified Minkowski dimension and the infimum is over all sets $U\subseteq{\mathbb R}{m}$ with $\mathbb{P}[{\boldsymbol{\mathsf{x}}}\in U]=1$. This achievability statement holds for Lebesgue almost all measurement matrices $\boldsymbol{A}$. We then show that $s$-rectifiable random vectors---a stochastic generalization of $s$-sparse vectors---can be recovered with zero error probability from $n>s$ linear measurements. From classical compressed sensing theory we would expect $n\geq s$ to be necessary for successful recovery of ${\boldsymbol{\mathsf{x}}}$. Surprisingly, certain classes of $s$-rectifiable random vectors can be recovered from fewer than $s$ measurements. Imposing an additional regularity condition on the distribution of $s$-rectifiable random vectors ${\boldsymbol{\mathsf{x}}}$, we do get the expected converse result of $s$ measurements being necessary. The resulting class of random vectors appears to be new and will be referred to as $s$-analytic random vectors.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.