Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear-time Outlier Detection via Sensitivity (1605.00519v1)

Published 2 May 2016 in stat.ML and cs.LG

Abstract: Outliers are ubiquitous in modern data sets. Distance-based techniques are a popular non-parametric approach to outlier detection as they require no prior assumptions on the data generating distribution and are simple to implement. Scaling these techniques to massive data sets without sacrificing accuracy is a challenging task. We propose a novel algorithm based on the intuition that outliers have a significant influence on the quality of divergence-based clustering solutions. We propose sensitivity - the worst-case impact of a data point on the clustering objective - as a measure of outlierness. We then prove that influence, a (non-trivial) upper-bound on the sensitivity, can be computed by a simple linear time algorithm. To scale beyond a single machine, we propose a communication efficient distributed algorithm. In an extensive experimental evaluation, we demonstrate the effectiveness and establish the statistical significance of the proposed approach. In particular, it outperforms the most popular distance-based approaches while being several orders of magnitude faster.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.