Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A New NOMA Approach for Fair Power Allocation (1605.00390v1)

Published 2 May 2016 in cs.IT and math.IT

Abstract: A non-orthogonal multiple access (NOMA) approach to user signal power allocation called Fair-NOMA is introduced. Fair-NOMA is the application of NOMA in such a way that two mobile users have the opportunity to always achieve at least the information capacity they can achieve by using orthogonal multiple access (OMA), regardless of the user selection criteria, making it suitable for implementation using any current or future scheduling paradigms. Given this condition, the bounds of the power allocation coefficients are derived as functions of the channel gains of the two mobile users. The NOMA power allocation is analyzed for two scheduled users that are selected randomly with i.i.d. channel gains. The capacity improvements made by each user and the sum capacity improvement are derived.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube