Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Energy-Distortion Tradeoff for the Gaussian Broadcast Channel with Feedback (1605.00204v1)

Published 1 May 2016 in cs.IT and math.IT

Abstract: This work focuses on the minimum transmission energy required for communicating a pair of correlated Gaussian sources over a two-user Gaussian broadcast channel with noiseless and causal channel output feedback (GBCF). We study the fundamental limit on the required transmission energy for broadcasting a pair of source samples, such that each source can be reconstructed at its respective receiver to within a target distortion, when the source-channel bandwidth ratio is not restricted. We derive a lower bound and three distinct upper bounds on the minimum required energy. For the upper bounds we analyze three transmission schemes: Two schemes are based on separate source-channel coding, and apply coding over multiple samples of source pairs. The third scheme is based on joint source-channel coding obtained by extending the Ozarow-Leung (OL) transmission scheme, which applies uncoded linear transmission. Numerical simulations show that despite its simplicity, the energy-distortion tradeoff of the OL-based scheme is close to that of the better separation-based scheme, which indicates that the OL scheme is attractive for energy-efficient source transmission over GBCFs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube