Delocalized Epidemics on Graphs: A Maximum Entropy Approach (1605.00198v1)
Abstract: The susceptible--infected--susceptible (SIS) epidemic process on complex networks can show metastability, resembling an endemic equilibrium. In a general setting, the metastable state may involve a large portion of the network, or it can be localized on small subgraphs of the contact network. Localized infections are not interesting because a true outbreak concerns network--wide invasion of the contact graph rather than localized infection of certain sites within the contact network. Existing approaches to localization phenomenon suffer from a major drawback: they fully rely on the steady--state solution of mean--field approximate models in the neighborhood of their phase transition point, where their approximation accuracy is worst; as statistical physics tells us. We propose a dispersion entropy measure that quantifies the localization of infections in a generic contact graph. Formulating a maximum entropy problem, we find an upper bound for the dispersion entropy of the possible metastable state in the exact SIS process. As a result, we find sufficient conditions such that any initial infection over the network either dies out or reaches a localized metastable state. Unlike existing studies relying on the solution of mean--field approximate models, our investigation of epidemic localization is based on characteristics of exact SIS equations. Our proposed method offers a new paradigm in studying spreading processes over complex networks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.