Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distributed Detection Fusion via Monte Carlo Importance Sampling (1605.00194v1)

Published 1 May 2016 in cs.IT and math.IT

Abstract: Distributed detection fusion with high-dimension conditionally dependent observations is known to be a challenging problem. When a fusion rule is fixed, this paper attempts to make progress on this problem for the large sensor networks by proposing a new Monte Carlo framework. Through the Monte Carlo importance sampling, we derive a necessary condition for optimal sensor decision rules in the sense of minimizing the approximated Bayesian cost function. Then, a Gauss-Seidel/person-by-person optimization algorithm can be obtained to search the optimal sensor decision rules. It is proved that the discretized algorithm is finitely convergent. The complexity of the new algorithm is $O(LN)$ compared with $O(LNL)$ of the previous algorithm where $L$ is the number of sensors and $N$ is a constant. Thus, the proposed methods allows us to design the large sensor networks with general high-dimension dependent observations. Furthermore, an interesting result is that, for the fixed AND or OR fusion rules, we can analytically derive the optimal solution in the sense of minimizing the approximated Bayesian cost function. In general, the solution of the Gauss-Seidel algorithm is only local optimal. However, in the new framework, we can prove that the solution of Gauss-Seidel algorithm is same as the analytically optimal solution in the case of the AND or OR fusion rule. The typical examples with dependent observations and large number of sensors are examined under this new framework. The results of numerical examples demonstrate the effectiveness of the new algorithm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube