Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On Approximating Functions of the Singular Values in a Stream (1604.08679v2)

Published 29 Apr 2016 in cs.DS

Abstract: For any real number $p > 0$, we nearly completely characterize the space complexity of estimating $|A|pp = \sum{i=1}n \sigma_ip$ for $n \times n$ matrices $A$ in which each row and each column has $O(1)$ non-zero entries and whose entries are presented one at a time in a data stream model. Here the $\sigma_i$ are the singular values of $A$, and when $p \geq 1$, $|A|_pp$ is the $p$-th power of the Schatten $p$-norm. We show that when $p$ is not an even integer, to obtain a $(1+\epsilon)$-approximation to $|A|_pp$ with constant probability, any $1$-pass algorithm requires $n{1-g(\epsilon)}$ bits of space, where $g(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ and $\epsilon > 0$ is a constant independent of $n$. However, when $p$ is an even integer, we give an upper bound of $n{1-2/p} \textrm{poly}(\epsilon{-1}\log n)$ bits of space, which holds even in the turnstile data stream model. The latter is optimal up to $\textrm{poly}(\epsilon{-1} \log n)$ factors. Our results considerably strengthen lower bounds in previous work for arbitrary (not necessarily sparse) matrices $A$: the previous best lower bound was $\Omega(\log n)$ for $p\in (0,1)$, $\Omega(n{1/p-1/2}/\log n)$ for $p\in [1,2)$ and $\Omega(n{1-2/p})$ for $p\in (2,\infty)$. We note for $p \in (2, \infty)$, while our lower bound for even integers is the same, for other $p$ in this range our lower bound is $n{1-g(\epsilon)}$, which is considerably stronger than the previous $n{1-2/p}$ for small enough constant $\epsilon > 0$. We obtain similar near-linear lower bounds for Ky-Fan norms, SVD entropy, eigenvalue shrinkers, and M-estimators, many of which could have been solvable in logarithmic space prior to our work.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)