Architectural Impact on Performance of In-memory Data Analytics: Apache Spark Case Study (1604.08484v1)
Abstract: While cluster computing frameworks are continuously evolving to provide real-time data analysis capabilities, Apache Spark has managed to be at the forefront of big data analytics for being a unified framework for both, batch and stream data processing. However, recent studies on micro-architectural characterization of in-memory data analytics are limited to only batch processing workloads. We compare micro-architectural performance of batch processing and stream processing workloads in Apache Spark using hardware performance counters on a dual socket server. In our evaluation experiments, we have found that batch processing are stream processing workloads have similar micro-architectural characteristics and are bounded by the latency of frequent data access to DRAM. For data accesses we have found that simultaneous multi-threading is effective in hiding the data latencies. We have also observed that (i) data locality on NUMA nodes can improve the performance by 10% on average and(ii) disabling next-line L1-D prefetchers can reduce the execution time by up-to 14\% and (iii) multiple small executors can provide up-to 36\% speedup over single large executor.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.