Papers
Topics
Authors
Recent
2000 character limit reached

Diving deeper into mentee networks (1604.08220v1)

Published 27 Apr 2016 in cs.LG, cs.CV, and cs.NE

Abstract: Modern computer vision is all about the possession of powerful image representations. Deeper and deeper convolutional neural networks have been built using larger and larger datasets and are made publicly available. A large swath of computer vision scientists use these pre-trained networks with varying degrees of successes in various tasks. Even though there is tremendous success in copying these networks, the representational space is not learnt from the target dataset in a traditional manner. One of the reasons for opting to use a pre-trained network over a network learnt from scratch is that small datasets provide less supervision and require meticulous regularization, smaller and careful tweaking of learning rates to even achieve stable learning without weight explosion. It is often the case that large deep networks are not portable, which necessitates the ability to learn mid-sized networks from scratch. In this article, we dive deeper into training these mid-sized networks on small datasets from scratch by drawing additional supervision from a large pre-trained network. Such learning also provides better generalization accuracies than networks trained with common regularization techniques such as l2, l1 and dropouts. We show that features learnt thus, are more general than those learnt independently. We studied various characteristics of such networks and found some interesting behaviors.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.