Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Collective Stochastic Discrete Choice Problems: A Min-LQG Game Formulation (1604.08136v3)

Published 27 Apr 2016 in cs.SY and math.OC

Abstract: We consider a class of dynamic collective choice models with social interactions, whereby a large number of non-uniform agents have to individually settle on one of multiple discrete alternative choices, with the relevance of their would-be choices continuously impacted by noise and the unfolding group behavior. This class of problems is modeled here as a so-called Min-LQG game, i.e., a linear quadratic Gaussian dynamic and non-cooperative game, with an additional combinatorial aspect in that it includes a final choice-related minimization in its terminal cost. The presence of this minimization term is key to enforcing some specific discrete choice by each individual agent. The theory of mean field games is invoked to generate a class of decentralized agent feedback control strategies which are then shown to converge to an exact Nash equilibrium of the game as the number of players increases to infinity. A key building block in our approach is an explicit solution to the problem of computing the best response of a generic agent to some arbitrarily posited smooth mean field trajectory. Ultimately, an agent is shown to face a continuously revised discrete choice problem, where greedy choices dictated by current conditions must be constantly balanced against the risk of the future process noise upsetting the wisdom of such decisions.Even though an agent's ultimately chosen alternative is random and dictated by its entire noise history and initial state, the limiting infinite population macroscopic behavior can still be predicted. It is shown that any Nash equilibrium of the game is defined by an a priori computable probability matrix characterizing the manner in which the agent population ultimately splits among the available alternatives.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube