Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Observability-Aware Trajectory Optimization for Self-Calibration with Application to UAVs (1604.07905v1)

Published 27 Apr 2016 in cs.RO

Abstract: We study the nonlinear observability of a systems states in view of how well they are observable and what control inputs would improve the convergence of their estimates. We use these insights to develop an observability-aware trajectory-optimization framework for nonlinear systems that produces trajectories well suited for self-calibration. Common trajectory-planning algorithms tend to generate motions that lead to an unobservable subspace of the system state, causing suboptimal state estimation. We address this problem with a method that reasons about the quality of observability while respecting system dynamics and motion constraints to yield the optimal trajectory for rapid convergence of the self-calibration states (or other user-chosen states). Experiments performed on a simulated quadrotor system with a GPS-IMU sensor suite demonstrate the benefits of the optimized observability-aware trajectories when compared to a covariance-based approach and multiple heuristic approaches. Our method is approx. 80x faster than the covariance-based approach and achieves better results than any other approach in the self-calibration task. We applied our method to a waypoint navigation task and achieved a approx. 2x improvement in the integrated RMSE of the global position estimates and approx. 4x improvement in the integrated RMSE of the GPS-IMU transformation estimates compared to a minimal-energy trajectory planner.

Citations (62)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.