Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

F-measure Maximization in Multi-Label Classification with Conditionally Independent Label Subsets (1604.07759v3)

Published 26 Apr 2016 in cs.LG

Abstract: We discuss a method to improve the exact F-measure maximization algorithm called GFM, proposed in (Dembczynski et al. 2011) for multi-label classification, assuming the label set can be can partitioned into conditionally independent subsets given the input features. If the labels were all independent, the estimation of only $m$ parameters ($m$ denoting the number of labels) would suffice to derive Bayes-optimal predictions in $O(m2)$ operations. In the general case, $m2+1$ parameters are required by GFM, to solve the problem in $O(m3)$ operations. In this work, we show that the number of parameters can be reduced further to $m2/n$, in the best case, assuming the label set can be partitioned into $n$ conditionally independent subsets. As this label partition needs to be estimated from the data beforehand, we use first the procedure proposed in (Gasse et al. 2015) that finds such partition and then infer the required parameters locally in each label subset. The latter are aggregated and serve as input to GFM to form the Bayes-optimal prediction. We show on a synthetic experiment that the reduction in the number of parameters brings about significant benefits in terms of performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.