Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parallel Local Graph Clustering (1604.07515v3)

Published 26 Apr 2016 in cs.DC

Abstract: Graph clustering has many important applications in computing, but due to growing sizes of graphs, even traditionally fast clustering methods such as spectral partitioning can be computationally expensive for real-world graphs of interest. Motivated partly by this, so-called local algorithms for graph clustering have received significant interest due to the fact that they can find good clusters in a graph with work proportional to the size of the cluster rather than that of the entire graph. This feature has proven to be crucial in making such graph clustering and many of its downstream applications efficient in practice. While local clustering algorithms are already faster than traditional algorithms that touch the entire graph, they are sequential and there is an opportunity to make them even more efficient via parallelization. In this paper, we show how to parallelize many of these algorithms in the shared-memory multicore setting, and we analyze the parallel complexity of these algorithms. We present comprehensive experiments on large-scale graphs showing that our parallel algorithms achieve good parallel speedups on a modern multicore machine, thus significantly speeding up the analysis of local graph clusters in the very large-scale setting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.