Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Compressed-domain visual saliency models: A comparative study (1604.07339v1)

Published 25 Apr 2016 in cs.MM

Abstract: Computational modeling of visual saliency has become an important research problem in recent years, with applications in video quality estimation, video compression, object tracking, retargeting, summarization, and so on. While most visual saliency models for dynamic scenes operate on raw video, several models have been developed for use with compressed-domain information such as motion vectors and transform coefficients. This paper presents a comparative study of eleven such models as well as two high-performing pixel-domain saliency models on two eye-tracking datasets using several comparison metrics. The results indicate that highly accurate saliency estimation is possible based only on a partially decoded video bitstream. The strategies that have shown success in compressed-domain saliency modeling are highlighted, and certain challenges are identified as potential avenues for further improvement.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.