Papers
Topics
Authors
Recent
2000 character limit reached

The number of labeled graphs of bounded treewidth (1604.07273v1)

Published 25 Apr 2016 in math.CO, cs.DM, and cs.DS

Abstract: We focus on counting the number of labeled graphs on $n$ vertices and treewidth at most $k$ (or equivalently, the number of labeled partial $k$-trees), which we denote by $T_{n,k}$. So far, only the particular cases $T_{n,1}$ and $T_{n,2}$ had been studied. We show that $$ \left(c \cdot \frac{k\cdot 2k \cdot n}{\log k} \right)n \cdot 2{-\frac{k(k+3)}{2}} \cdot k{-2k-2}\ \leq\ T_{n,k}\ \leq\ \left(k \cdot 2k \cdot n\right)n \cdot 2{-\frac{k(k+1)}{2}} \cdot k{-k}, $$ for $k > 1$ and some explicit absolute constant $c > 0$. The upper bound is an immediate consequence of the well-known number of labeled $k$-trees, while the lower bound is obtained from an explicit algorithmic construction. It follows from this construction that both bounds also apply to graphs of pathwidth and proper-pathwidth at most $k$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.