Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Reduced Reference Parametric Models for Estimating Audiovisual Quality in Multimedia Services (1604.07211v1)

Published 25 Apr 2016 in cs.MM and cs.LG

Abstract: We have developed reduced reference parametric models for estimating perceived quality in audiovisual multimedia services. We have created 144 unique configurations for audiovisual content including various application and network parameters such as bitrates and distortions in terms of bandwidth, packet loss rate and jitter. To generate the data needed for model training and validation we have tasked 24 subjects, in a controlled environment, to rate the overall audiovisual quality on the absolute category rating (ACR) 5-level quality scale. We have developed models using Random Forest and Neural Network based machine learning methods in order to estimate Mean Opinion Scores (MOS) values. We have used information retrieved from the packet headers and side information provided as network parameters for model training. Random Forest based models have performed better in terms of Root Mean Square Error (RMSE) and Pearson correlation coefficient. The side information proved to be very effective in developing the model. We have found that, while the model performance might be improved by replacing the side information with more accurate bit stream level measurements, they are performing well in estimating perceived quality in audiovisual multimedia services.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.