Extension Complexity of Independent Set Polytopes (1604.07062v1)
Abstract: We exhibit an $n$-node graph whose independent set polytope requires extended formulations of size exponential in $\Omega(n/\log n)$. Previously, no explicit examples of $n$-dimensional $0/1$-polytopes were known with extension complexity larger than exponential in $\Theta(\sqrt{n})$. Our construction is inspired by a relatively little-known connection between extended formulations and (monotone) circuit depth.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.