Dependency Parsing with LSTMs: An Empirical Evaluation (1604.06529v2)
Abstract: We propose a transition-based dependency parser using Recurrent Neural Networks with Long Short-Term Memory (LSTM) units. This extends the feedforward neural network parser of Chen and Manning (2014) and enables modelling of entire sequences of shift/reduce transition decisions. On the Google Web Treebank, our LSTM parser is competitive with the best feedforward parser on overall accuracy and notably achieves more than 3% improvement for long-range dependencies, which has proved difficult for previous transition-based parsers due to error propagation and limited context information. Our findings additionally suggest that dropout regularisation on the embedding layer is crucial to improve the LSTM's generalisation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.