Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Novelty Detection in MultiClass Scenarios with Incomplete Set of Class Labels (1604.06242v2)

Published 21 Apr 2016 in cs.CV

Abstract: We address the problem of novelty detection in multiclass scenarios where some class labels are missing from the training set. Our method is based on the initial assignment of confidence values, which measure the affinity between a new test point and each known class. We first compare the values of the two top elements in this vector of confidence values. In the heart of our method lies the training of an ensemble of classifiers, each trained to discriminate known from novel classes based on some partition of the training data into presumed-known and presumednovel classes. Our final novelty score is derived from the output of this ensemble of classifiers. We evaluated our method on two datasets of images containing a relatively large number of classes - the Caltech-256 and Cifar-100 datasets. We compared our method to 3 alternative methods which represent commonly used approaches, including the one-class SVM, novelty based on k-NN, novelty based on maximal confidence, and the recent KNFST method. The results show a very clear and marked advantage for our method over all alternative methods, in an experimental setup where class labels are missing during training.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.