Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Extended Littlestone's Dimension for Learning with Mistakes and Abstentions (1604.06162v3)

Published 21 Apr 2016 in cs.LG

Abstract: This paper studies classification with an abstention option in the online setting. In this setting, examples arrive sequentially, the learner is given a hypothesis class $\mathcal H$, and the goal of the learner is to either predict a label on each example or abstain, while ensuring that it does not make more than a pre-specified number of mistakes when it does predict a label. Previous work on this problem has left open two main challenges. First, not much is known about the optimality of algorithms, and in particular, about what an optimal algorithmic strategy is for any individual hypothesis class. Second, while the realizable case has been studied, the more realistic non-realizable scenario is not well-understood. In this paper, we address both challenges. First, we provide a novel measure, called the Extended Littlestone's Dimension, which captures the number of abstentions needed to ensure a certain number of mistakes. Second, we explore the non-realizable case, and provide upper and lower bounds on the number of abstentions required by an algorithm to guarantee a specified number of mistakes.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube