New Deterministic Approximation Algorithms for Fully Dynamic Matching (1604.05765v1)
Abstract: We present two deterministic dynamic algorithms for the maximum matching problem. (1) An algorithm that maintains a $(2+\epsilon)$-approximate maximum matching in general graphs with $O(\text{poly}(\log n, 1/\epsilon))$ update time. (2) An algorithm that maintains an $\alpha_K$ approximation of the {\em value} of the maximum matching with $O(n{2/K})$ update time in bipartite graphs, for every sufficiently large constant positive integer $K$. Here, $1\leq \alpha_K < 2$ is a constant determined by the value of $K$. Result (1) is the first deterministic algorithm that can maintain an $o(\log n)$-approximate maximum matching with polylogarithmic update time, improving the seminal result of Onak et al. [STOC 2010]. Its approximation guarantee almost matches the guarantee of the best {\em randomized} polylogarithmic update time algorithm [Baswana et al. FOCS 2011]. Result (2) achieves a better-than-two approximation with {\em arbitrarily small polynomial} update time on bipartite graphs. Previously the best update time for this problem was $O(m{1/4})$ [Bernstein et al. ICALP 2015], where $m$ is the current number of edges in the graph.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.